Serveur d'exploration sur les effecteurs de la rouille

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dissection of Cell Death Induction by Wheat Stem Rust Resistance Protein Sr35 and Its Matching Effector AvrSr35.

Identifieur interne : 000019 ( Main/Exploration ); précédent : 000018; suivant : 000020

Dissection of Cell Death Induction by Wheat Stem Rust Resistance Protein Sr35 and Its Matching Effector AvrSr35.

Auteurs : Stephen Bolus [États-Unis] ; Eduard Akhunov [États-Unis] ; Gitta Coaker ; Jorge Dubcovsky [États-Unis]

Source :

RBID : pubmed:31556346

Descripteurs français

English descriptors

Abstract

Nucleotide-binding leucine-rich repeat receptors (NLRs) are the most abundant type of immune receptors in plants and can trigger a rapid cell-death (hypersensitive) response upon sensing pathogens. We previously cloned the wheat NLR Sr35, which encodes a coiled-coil (CC) NLR that confers resistance to the virulent wheat stem rust race Ug99. Here, we investigated Sr35 signaling after Agrobacterium-mediated transient expression in Nicotiana benthamiana. Expression of Sr35 in N. benthamiana leaves triggered a mild cell-death response, which is enhanced in the autoactive mutant Sr35 D503V. The N-terminal tagging of Sr35 with green fluorescent protein (GFP) blocked the induction of cell death, whereas a C-terminal GFP tag did not. No domain truncations of Sr35 generated cell-death responses as strong as the wild type, but a truncation including the NB-ARC (nucleotide binding adaptor) shared by APAF-1, R proteins, and CED-4 domains in combination with the D503V autoactive mutation triggered cell death. In addition, coexpression of Sr35 with the matching pathogen effector protein AvrSr35 resulted in robust cell death and electrolyte leakage levels that were similar to autoactive Sr35 and significantly higher than Sr35 alone. Coexpression of Sr35-CC-NB-ARC and AvrSr35 did not induce cell death, confirming the importance of the leucine-rich repeat (LRR) domain for AvrSr35 recognition. These findings were confirmed through Agrobacterium-mediated transient expression in barley. Taken together, these results implicate the CC-NB-ARC domains of Sr35 in inducing cell death and the LRR domain in AvrSr35 recognition.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.

DOI: 10.1094/MPMI-08-19-0216-R
PubMed: 31556346
PubMed Central: PMC7309591


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dissection of Cell Death Induction by Wheat Stem Rust Resistance Protein Sr35 and Its Matching Effector AvrSr35.</title>
<author>
<name sortKey="Bolus, Stephen" sort="Bolus, Stephen" uniqKey="Bolus S" first="Stephen" last="Bolus">Stephen Bolus</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of California, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, University of California, Davis.</nlm:affiliation>
<wicri:noCountry code="subField">Davis</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Akhunov, Eduard" sort="Akhunov, Eduard" uniqKey="Akhunov E" first="Eduard" last="Akhunov">Eduard Akhunov</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Kansas State University, Manhattan, KS 66506</wicri:regionArea>
<placeName>
<region type="state">Kansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Coaker, Gitta" sort="Coaker, Gitta" uniqKey="Coaker G" first="Gitta" last="Coaker">Gitta Coaker</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, University of California, Davis.</nlm:affiliation>
<wicri:noCountry code="subField">Davis</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Dubcovsky, Jorge" sort="Dubcovsky, Jorge" uniqKey="Dubcovsky J" first="Jorge" last="Dubcovsky">Jorge Dubcovsky</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of California, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Howard Hughes Medical Institute, Chevy Chase, MD 20815, U.S.A.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute, Chevy Chase, MD 20815</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31556346</idno>
<idno type="pmid">31556346</idno>
<idno type="doi">10.1094/MPMI-08-19-0216-R</idno>
<idno type="pmc">PMC7309591</idno>
<idno type="wicri:Area/Main/Corpus">000030</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000030</idno>
<idno type="wicri:Area/Main/Curation">000030</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000030</idno>
<idno type="wicri:Area/Main/Exploration">000030</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dissection of Cell Death Induction by Wheat Stem Rust Resistance Protein Sr35 and Its Matching Effector AvrSr35.</title>
<author>
<name sortKey="Bolus, Stephen" sort="Bolus, Stephen" uniqKey="Bolus S" first="Stephen" last="Bolus">Stephen Bolus</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of California, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, University of California, Davis.</nlm:affiliation>
<wicri:noCountry code="subField">Davis</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Akhunov, Eduard" sort="Akhunov, Eduard" uniqKey="Akhunov E" first="Eduard" last="Akhunov">Eduard Akhunov</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Kansas State University, Manhattan, KS 66506</wicri:regionArea>
<placeName>
<region type="state">Kansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Coaker, Gitta" sort="Coaker, Gitta" uniqKey="Coaker G" first="Gitta" last="Coaker">Gitta Coaker</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, University of California, Davis.</nlm:affiliation>
<wicri:noCountry code="subField">Davis</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Dubcovsky, Jorge" sort="Dubcovsky, Jorge" uniqKey="Dubcovsky J" first="Jorge" last="Dubcovsky">Jorge Dubcovsky</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of California, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Howard Hughes Medical Institute, Chevy Chase, MD 20815, U.S.A.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute, Chevy Chase, MD 20815</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular plant-microbe interactions : MPMI</title>
<idno type="ISSN">0894-0282</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Death (genetics)</term>
<term>Disease Resistance (genetics)</term>
<term>Plant Proteins (genetics)</term>
<term>Triticum (genetics)</term>
<term>Triticum (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Mort cellulaire (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Résistance à la maladie (génétique)</term>
<term>Triticum (génétique)</term>
<term>Triticum (microbiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Death</term>
<term>Disease Resistance</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Mort cellulaire</term>
<term>Protéines végétales</term>
<term>Résistance à la maladie</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Triticum</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nucleotide-binding leucine-rich repeat receptors (NLRs) are the most abundant type of immune receptors in plants and can trigger a rapid cell-death (hypersensitive) response upon sensing pathogens. We previously cloned the wheat NLR
<i>Sr35</i>
, which encodes a coiled-coil (CC) NLR that confers resistance to the virulent wheat stem rust race Ug99. Here, we investigated Sr35 signaling after
<i>Agrobacterium</i>
<i>-</i>
mediated transient expression in
<i>Nicotiana benthamiana.</i>
Expression of Sr35 in
<i>N. benthamiana</i>
leaves triggered a mild cell-death response, which is enhanced in the autoactive mutant Sr35 D503V. The N-terminal tagging of Sr35 with green fluorescent protein (GFP) blocked the induction of cell death, whereas a C-terminal GFP tag did not. No domain truncations of Sr35 generated cell-death responses as strong as the wild type, but a truncation including the NB-ARC (nucleotide binding adaptor) shared by APAF-1, R proteins, and CED-4 domains in combination with the D503V autoactive mutation triggered cell death. In addition, coexpression of Sr35 with the matching pathogen effector protein AvrSr35 resulted in robust cell death and electrolyte leakage levels that were similar to autoactive Sr35 and significantly higher than Sr35 alone. Coexpression of Sr35-CC-NB-ARC and AvrSr35 did not induce cell death, confirming the importance of the leucine-rich repeat (LRR) domain for AvrSr35 recognition. These findings were confirmed through
<i>Agrobacterium</i>
-mediated transient expression in barley. Taken together, these results implicate the CC-NB-ARC domains of Sr35 in inducing cell death and the LRR domain in AvrSr35 recognition.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">31556346</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0894-0282</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>33</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Molecular plant-microbe interactions : MPMI</Title>
<ISOAbbreviation>Mol Plant Microbe Interact</ISOAbbreviation>
</Journal>
<ArticleTitle>Dissection of Cell Death Induction by Wheat Stem Rust Resistance Protein Sr35 and Its Matching Effector AvrSr35.</ArticleTitle>
<Pagination>
<MedlinePgn>308-319</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1094/MPMI-08-19-0216-R</ELocationID>
<Abstract>
<AbstractText>Nucleotide-binding leucine-rich repeat receptors (NLRs) are the most abundant type of immune receptors in plants and can trigger a rapid cell-death (hypersensitive) response upon sensing pathogens. We previously cloned the wheat NLR
<i>Sr35</i>
, which encodes a coiled-coil (CC) NLR that confers resistance to the virulent wheat stem rust race Ug99. Here, we investigated Sr35 signaling after
<i>Agrobacterium</i>
<i>-</i>
mediated transient expression in
<i>Nicotiana benthamiana.</i>
Expression of Sr35 in
<i>N. benthamiana</i>
leaves triggered a mild cell-death response, which is enhanced in the autoactive mutant Sr35 D503V. The N-terminal tagging of Sr35 with green fluorescent protein (GFP) blocked the induction of cell death, whereas a C-terminal GFP tag did not. No domain truncations of Sr35 generated cell-death responses as strong as the wild type, but a truncation including the NB-ARC (nucleotide binding adaptor) shared by APAF-1, R proteins, and CED-4 domains in combination with the D503V autoactive mutation triggered cell death. In addition, coexpression of Sr35 with the matching pathogen effector protein AvrSr35 resulted in robust cell death and electrolyte leakage levels that were similar to autoactive Sr35 and significantly higher than Sr35 alone. Coexpression of Sr35-CC-NB-ARC and AvrSr35 did not induce cell death, confirming the importance of the leucine-rich repeat (LRR) domain for AvrSr35 recognition. These findings were confirmed through
<i>Agrobacterium</i>
-mediated transient expression in barley. Taken together, these results implicate the CC-NB-ARC domains of Sr35 in inducing cell death and the LRR domain in AvrSr35 recognition.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bolus</LastName>
<ForeName>Stephen</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-5472-095X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of California, Davis.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Akhunov</LastName>
<ForeName>Eduard</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Coaker</LastName>
<ForeName>Gitta</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of California, Davis.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dubcovsky</LastName>
<ForeName>Jorge</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-7571-4345</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Howard Hughes Medical Institute, Chevy Chase, MD 20815, U.S.A.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM092772</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>12</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Plant Microbe Interact</MedlineTA>
<NlmUniqueID>9107902</NlmUniqueID>
<ISSNLinking>0894-0282</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016923" MajorTopicYN="Y">Cell Death</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="Y">Disease Resistance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="Y">Triticum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">AvrSr35</Keyword>
<Keyword MajorTopicYN="N">Puccinia graminis</Keyword>
<Keyword MajorTopicYN="N">Sr35</Keyword>
<Keyword MajorTopicYN="N">barley</Keyword>
<Keyword MajorTopicYN="N">cell death</Keyword>
<Keyword MajorTopicYN="N">disease resistance</Keyword>
<Keyword MajorTopicYN="N">effector</Keyword>
<Keyword MajorTopicYN="N">hypersensitive response</Keyword>
<Keyword MajorTopicYN="N">nucleotide-binding leucine-rich repeat receptor</Keyword>
<Keyword MajorTopicYN="N">stem rust</Keyword>
<Keyword MajorTopicYN="N">wheat</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>9</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>9</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31556346</ArticleId>
<ArticleId IdType="doi">10.1094/MPMI-08-19-0216-R</ArticleId>
<ArticleId IdType="pmc">PMC7309591</ArticleId>
<ArticleId IdType="mid">NIHMS1589401</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):E6486-E6495</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27702901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Aug 16;341(6147):746-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23950531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Apr;170(4):2095-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26839128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):E7385-E7394</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28808003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Jul;219(1):17-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29131341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2019 Apr 5;364(6435):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30948526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Aug;24(8):918-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21501087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(6):e1002752</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22685408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Aug;174(4):2038-2053</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28652264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci Bioeng. 2007 Jul;104(1):34-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17697981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 3;108(18):7619-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21490299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2531-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17277084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):E9483-E9492</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29078294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jan;23(1):4-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21278123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2018 Jan;19(1):21-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29109524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2019 Apr 5;364(6435):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30948527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Mar;20(3):739-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18344282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Nov;14(11):2929-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng Des Sel. 2008 Nov;21(11):639-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18753194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 May;171(1):658-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26951433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Apr;140(4):1233-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16489136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Apr;158(4):1819-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22331412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Aug 16;341(6147):783-786</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23811222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Dec;16(12):3480-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15548741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2018 Sep;31(9):906-913</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29663867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jul 4;289(27):19079-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24841201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Dec 22;358(6370):1604-1606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29269474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2016 Aug;56:134-149</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27208725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Oct;32(2):195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12383085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 Apr 10;11(4):e1004830</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25859856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Oct;14(10):521-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19720556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1992 Feb;18(4):675-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1313711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Sep 6;113(36):10204-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27555587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2018 Apr 3;14(4):e1007287</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29614079</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Kansas</li>
<li>Maryland</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Coaker, Gitta" sort="Coaker, Gitta" uniqKey="Coaker G" first="Gitta" last="Coaker">Gitta Coaker</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Bolus, Stephen" sort="Bolus, Stephen" uniqKey="Bolus S" first="Stephen" last="Bolus">Stephen Bolus</name>
</region>
<name sortKey="Akhunov, Eduard" sort="Akhunov, Eduard" uniqKey="Akhunov E" first="Eduard" last="Akhunov">Eduard Akhunov</name>
<name sortKey="Dubcovsky, Jorge" sort="Dubcovsky, Jorge" uniqKey="Dubcovsky J" first="Jorge" last="Dubcovsky">Jorge Dubcovsky</name>
<name sortKey="Dubcovsky, Jorge" sort="Dubcovsky, Jorge" uniqKey="Dubcovsky J" first="Jorge" last="Dubcovsky">Jorge Dubcovsky</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustEffectorV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000019 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000019 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustEffectorV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31556346
   |texte=   Dissection of Cell Death Induction by Wheat Stem Rust Resistance Protein Sr35 and Its Matching Effector AvrSr35.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31556346" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustEffectorV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 10 15:52:57 2020. Site generation: Tue Nov 10 15:53:28 2020